“We build to meet the growing needs of our stakeholders but we always strive to protect and enhance our beautiful campus.”

Peter MacKinnon, President
University of Saskatchewan
INSIDE

Legacy of Leadership

4 President MacKinnon’s Legacy of Leadership
5 Planning for Success

Completed Projects, 2010–11

8 Graham Huskie Clubhouse Expansion
9 Griffiths Stadium at PotashCorp Park, Seating Expansion
10 Marquis Hall Renewal
11 Diefenbaker Building Rejuvenation
12 Place Riel Student Centre Expansion/Renovation
13 Student Health and Counselling Centre
14 Steam Distribution Replacement (Veterinary Road)
15 Knowledge Infrastructure Program (KIP) Roofing Project
16 WCVM Diagnostic Renovation (KIP) Project
17 Undergraduate Student Residences, Phase One

Projects in Construction

17 Undergraduate Student Residences, Phase Two
18 Graduate Student Residence
20 Canadian Feed Research Centre
20 Campus Wide Lighting Retrofit
21 Rayner Dairy Research and Teaching Facility
22 Ryan/Dubé Equine Performance Centre
22 WCVM MRI/LinAcc Installation
23 International Vaccine Centre (InterVac)
24 Agriculture Building Phytotron Infrastructure Renewal
24 Heating Plant Expansion Feed Water Addition
26 Health Sciences, D Wing
28 Health Sciences, E Wing

Future Projects

31 Health Sciences, A&B Wing
32 Gordon Oakes – Red Bear Student Centre
34 Saskatchewan Centre for Innovations in Cyclotron Science
35 RenewUS: A Proposal to Renew Our Core Campus
36 Child Care Facilities Project
36 The Clarion Project
37 Beef Cattle Research & Teaching Unit
37 Replacement of Boiler #2
37 Natural Resources Innovation Complex (working title)
37 Murray Library Transformation Project Phase 3
37 Southern Saskatchewan Academic Health Sciences Hub
37 Stone Barn – Structure and Safety Issues for Long-term Stability

Preliminary Projects

37 Other Projects Under Consideration
The University of Saskatchewan’s founders had a dream of building a world-class institution of higher learning at the edge of a swift flowing river in the middle of the prairies. This edition of Building Matters honours the legacy of a man who helped to realize their dream. In a little over a decade, President Peter MacKinnon led the way as we built one of the most distinguished universities in Canada and the world.

Under President MacKinnon’s leadership, we have turned opportunity into future potential, built capacity and enhanced the student experience.

The University Learning Centre and Library Transformation project, completed in 2010, nearly doubled the area of the Murray Library devoted to student programs and services. The new College of Kinesiology Physical Activity Complex (PAC), opened in 2003, was designed not only to house the College of Kinesiology, but also to provide programs and fitness services for all U of S students, staff and faculty, as well as to support programs offered to the general public.

In the midst of all of this new construction, President MacKinnon led the charge to restore the university’s first building, the College Building. This important landmark was declared a national historic site in 2001 and was brought back to its former glory in 2005.

President MacKinnon will step down from his role as president as of June 30, 2012, but his legacy will remain. He leaves us with a passionate vision and clear priorities for the future. His vision provides a firm foundation for yet-unimagined opportunities and success.

We have dedicated this edition of Building Matters to President MacKinnon because of the mark he will leave on the changing face of the university campus. Over the years, we have used this publication to show, through photographs, illustrations and descriptions, how “we’re transforming dreams into reality. We’re building futures.”

Colin F. Tennent
Associate Vice-President, FMD & University Architect
The integrated planning process aligns university and college/unit-specific priorities with financial and capital resources, which permits strategic decision making and ensures responsible use of resources.

In the 2002 Strategic Directions, four key strategic directions were identified:
1. Attract and retain outstanding faculty.
2. Increase campus-wide commitment to research, scholarly and artistic work.
3. Establish the University of Saskatchewan as a major presence in graduate education.
4. Recruit and retain a diverse and academically promising body of students, and prepare them for success in the knowledge age.

With these strategic directions in mind, the university’s integrated planning process aligns university and college/unit-specific priorities with financial and capital resources, which permits strategic decision making and ensures the responsible use of all resources.*

The Multi-Year Capital Plan is a component of the university’s integrated plan. It serves as a guide for capital development and expenditures that are in line with the university’s priorities. So, while the Third Integrated Plan sets the direction for the university over the next four years, the Multi-Year Capital Plan aligns those directions with capital planning and management. It is a framework that encompasses physical assets such as buildings, space, land, infrastructure, information and communications technology, equipment, critical maintenance and renewal.

Included in the Multi-Year Capital Plan are all major capital projects—new building construction, expansion or renovation of an existing facility, and additions to information and communications technology—any project or acquisition that has a value greater than $500,000. The Multi-Year Capital Plan ensures all major capital projects are properly planned, approved, and managed from inception through to construction to support the university’s physical assets and strategic goals.

Over the past two planning cycles, partnerships with the provincial government, federal government, and funding partners, have been successful in completing innovative major capital projects that have supported the university’s teaching, learning, and research mission; have enhanced student services; and have renewed building and technology infrastructure.

Over the next four years, in support of the Third Integrated Plan, the university’s overarching capital priorities include the following:
- Implementing a renewal and revitalization program—RenewUS
- Developing new strategic capital projects based on university’s academic priorities

* For an illustration of how current and future projects featured in this publication align with the university’s strategic directions, please see the appendix on page 38.
The maps on these two pages illustrate the growth of the University of Saskatchewan from 1999 to 2012. During this period, a total of 36 major capital projects have been completed, including renovations to existing buildings and new construction. Ten more projects are in construction or nearing completion. There continues to be more development happening on campus right now than in any other point in our history!

Completed 1999–2010*

* Not indicated on this map:
 - Edwards School of Business, Downtown Campus, KW Nasser Centre, completed in 2009
 - Core Area Revitalization Project, which included Innovation Place (121 Research Drive), Kirk Hall, and Animal Science, completed in 2008
 - High Performance Research Computing Facility (Spinks), completed in 2009
In the following pages we will share details of the major capital projects completed since our last publication (see below). We will also describe projects currently in construction and projects still in the development stage.
Graham Huskie Clubhouse Expansion

A recent expansion to the already state-of-the-art Graham Huskie Clubhouse will solidify its reputation as one of the top athletic facilities in the country.

The clubhouse was constructed in 2005–06 in preparation for the 2006 Vanier Cup. The two-story expansion to the east side of the existing clubhouse began in August 2010 and was completed in August 2011. It features enhanced training areas for the Huskie football and other athletic programs, office space for coaching staff, and meeting/presentation space for other sports-related events.

On the ground floor, the training centre has been outfitted with about half a dozen lifting stations including an Olympic lifting platform, a lifting power cage, and dumbbell stations, as well a number of cardio areas. There is also a narrow field-turf area, about 25 metres long, which allows for speed training and agility work. While players are working out using their brand new equipment, they enjoy an incredible view of Griffiths Stadium through the large windows.

Office space for coaching staff, support areas, and meeting/presentation area occupy the second floor. The retractable sidewalls in the four second-floor meeting areas allow them to be combined into one large meeting area, thus accommodating both small group meetings and coaching needs as well as large meetings, receptions, and special events.

The roof deck, with a spectacular view of the stadium and track, provides additional space for gatherings. It also features a camera enclosure for game filming.

As you enter this new facility, you can’t help but feel inspired. The hallways and meeting area walls feature murals that bring to life the accomplishments of past players—Canadian Interuniversity Sport (CIS) award winners and all-Canadian players who have gone on to the Canadian Football League (CFL).

Funding Partners.
- Ron & Jane Graham
- David Dubé & Heather Ryan

Design & Construction Partners
- Graham Construction
- HDH Architects
With attendance on the rise, the Huskies football team was selling out many of their home games, which led to a call for more seats. Last summer, 1,174 new seats were added for the growing number of fans on game nights. This addition brought the total number of seats up to 6,000, making Griffiths Stadium at PotashCorp Park the third largest college football stadium in Canada (not including the teams that play in CFL stadiums).

The new seating includes 880 extra-wide premium stadium seats with cup holders and both back and arm rests. Coloured green or grey, the seats spell out “Huskies.” These are the first stadium seats in any football park in Saskatchewan. In addition to the premium seats, 294 bleacher seats were added to extend the student zone (Section 9).

Work began in July 2011 and was complete in September 2011.

Funding Partners
- David Dubé & Heather Ryan

Design & Construction Partners
- Gainor Agency Ltd.

USSU President Scott Hitchings, U of S President Peter MacKinnon (LLM’76), U of S Alumni Association President Jason Aebig (BA’99) take the field for the coin toss at the 2011 Alumni and Friends Homecoming football game.
Major renovations to Marquis Hall were designed to create a central gathering place on campus that would host retail services, residence dining, special events areas with ample seating, and a marché-style fresh food court area.

These changes addressed the recognized need to upgrade and modernize the current Food Services operations to meet the requirements and demands of the university community. Additional seating and serving space was provided, equipment was upgraded and relocated, and Marquis Hall was transformed into a comfortable and welcoming environment.

The first stage, completed over the summer of 2010, involved the partial removal of the ramp between the main and second floors and replacing it with a new elevator adjacent to the main foyer to provide full access to all three levels. Various other design changes in the kitchen and serving areas increased storage, improved functionality, addressed inefficiencies, and permanently resolved some health and safety concerns.

The second stage, involving the kitchen, servery, and dining hall upgrades, began as soon as the students left for the summer last year. During the demolition of the existing servery and kitchen area, several unplanned issues emerged that slowed construction. Fortunately, the kitchen was ready at the end of the summer as scheduled, but the servery was temporarily moved to the Gary Dining Room. Marquis Hall reopened on December 8, 2011. Students and staff at the University of Saskatchewan can now enjoy some of the finest food and ambiance that you can find anywhere in Saskatoon.

Marquis Hall is an important centre on campus and this investment will improve the student experience, serve the university’s need for enhanced special event meeting facilities, and contribute to the ongoing future viability of food service operations.

Design & Construction Partners
- Graham Construction
- Quorex Construction Ltd.
- VCM Construction Ltd.
- Stantec
University faculty, visiting scholars, students, and the general public are enjoying the modernized Diefenbaker Canada Centre. Recent renovations have transformed the building into a vibrant hub of public affairs, teaching, research, and programming.

The Diefenbaker Canada Centre is the only combined Prime Ministerial archives, museum, and research centre in Canada. It receives about 11,000 visitors per year, many of whom are school students. The building was constructed in 1979 to house the papers, memorabilia, and personal library bequeathed to the U of S by the former prime minister. Today, it is also home to the university’s Johnson-Shoyama Graduate School of Public Policy and the Centre for the Study of Co-operatives.

The recent renovation project involved a number of components. Upgrades to the collection storage area, along with equipment upgrades and enlargement of the conservation and preparation area, will ensure historically significant artifacts will be protected and preserved in the appropriate environment. These upgrades, combined with the aesthetic enhancements in the gallery space and lobby, provide the ideal venue for displaying the Diefenbaker collection as well as travelling exhibits.

The project also took advantage of some underused and poorly equipped spaces in the rest of the building to create an 80-seat classroom/lecture space. The existing meeting/lecture space (which can accommodate up to 25) was updated, and the river-facing lounge space was reconfigured to create a multi-purpose room. These improvements have enhanced the building’s function as an academic facility by creating valuable learning spaces for the entire university community.

This comprehensive renovation project has revitalized the Diefenbaker Building’s potential as a centre for leadership development and outreach programming.
After more than two years of construction, renovations to the Place Riel Student Centre were unveiled on August 18, 2011.

With the future needs of students in mind, the University of Saskatchewan Students’ Union (USSU) partnered with the University of Saskatchewan to expand and renovate Place Riel. The new space, now 5,100 square metres thanks to a four-storey addition, was designed to offer non-academic services and to meet the needs of a growing university population. As the front door to the university, the building is a major improvement and provides a great space for the university community to gather and get to know each other.

Beyond the four-storey addition, a few other changes stand out. The North Course is an expanded area of the existing main floor of Place Riel that now extends north of the old building toward the bowl to fill in the former exterior space between the Murray Building and Marquis Hall. Similar to other infill projects on campus, the exterior walls of both Murray and Marquis are now interior walls of the new building. Through careful planning using upper level skylights and atria, the designers have ensured natural light still penetrates the new space.

Lower Place Riel now features a wide variety of food outlets, a spacious seating area, retail space, and the International Student and Study Abroad Centre. The main level has been opened up and now houses USSU reception, an information kiosk, a travel agency, and a pharmacy. It is also home to the Alumni Wall of Honour, which features an interactive touch screen and display that highlight prominent University of Saskatchewan alumni and donors. The Alumni Wall was constructed to recognize alumni accomplishments as well as the impact donors have on the university and its students.

One final objective that remains outstanding is to obtain LEED certification for the project. The project’s documentation is currently being assembled for submission to the reviewing bodies in anticipation of achieving this certification.

President Peter MacKinnon and USSU General Manager Caroline Correll at the grand opening of Place Riel, August 18, 2011.
An exciting addition to the expanded Place Riel Student Centre was the Student Health and Counselling Centre, formerly housed in the Qu’Appelle Hall Addition and Saskatchewan Hall. The centre moved into the third and fourth floors of the new building, where they have nearly three times the area of the old facility. With additional space and upgrades, the University of Saskatchewan’s student health centre is now one of the best in Canada.

The new centre was operational at the end of July 2011.
Reliable steam service is vital for the research sector on campus, so replacing the failing direct buried district steam distribution system that runs between the Western College of Veterinary Medicine and the Vaccine and Infectious Disease Organization (VIDO) was critical to supporting nationally important, world-class research. This line serves the Canadian Light Source, InterVac, VIDO, Animal Resources Centre, POS (Proteins, Oils, Starches) Pilot Plant, and the General Purpose Building.

Steam system failures are not only disruptive, they also result in a great deal of steam condensate loss and potentially dangerous situations. The construction of a 450-metre concrete tunnel to replace the buried steam lines, along with an additional 120 metres of mechanical piping through the basement of WCVM, will decrease energy losses, improve safety and service reliability, save water, and reduce the use of treatment chemicals. The new tunnel and piping through the basement area contain high-pressure steam, high-pressure condensate, and pumped condensate return lines, as well as service chambers to allow access to ancillaries, such as isolation valves, steam traps, and expansion compensators. The size of the steam and condensate lines was also increased to ensure sufficient capacity to serve VIDO/InterVac and potential future developments in this part of the campus.

Construction for this project began in 2010. The new tunnel is now fully operational, but seasonal deficiencies, such as some minor landscaping and small curb/asphalt repairs, will be completed in the spring. Other than these deficiencies, construction was complete by March of 2012.

Funding Partners

- **Canada**
- **Government of Saskatchewan**

Design & Construction Partners

- Graham Construction
- Stantec
Roof leaks and failures are not only disruptive and damaging, they result in higher energy consumption for heating and cooling. A 2007 Roof Condition Assessment determined that the roofs of nearly 25% of the 47 major buildings on campus were well beyond their expected life spans and in need of replacement. A roof renewal program was one of the university’s most critical deferred maintenance priorities, but an undertaking of this magnitude far exceeded the capabilities of the university’s Capital Renewal Program. That’s where the federal and provincial government’s Knowledge Infrastructure Program (KIP) came in.

As part of Canada’s Economic Action Plan, a KIP grant provided $12,750,000 to assist with a roof renewal program on campus. This federal and provincial funding allowed the university to address the most critical areas on 15 buildings within the roof replacement program, ensure the preservation of physical assets and the continuity of university programming, and reduce energy consumption and greenhouse gas emissions. Taking advantage of green roof technologies provided even more cooling opportunities, as well as reducing storm water runoff and increasing life expectancy for the new roofs.

The Roof Replacement project was started in spring 2009 and completed by October 2011. The total amount of roofing done was 49,239 square metres or, to put this into perspective, a little more than the size of eight CFL football fields.

The buildings that have been repaired under the KIP program are indicated by a purple dot on the map of completed projects on page 5.
Student Residences

New student residences will provide an environment that enhances and develops both the academic and social success of our students.

Undergraduate Student Residences, Phase One

The University of Saskatchewan celebrated an important student-housing milestone in September 2011 when phase one of the College Quarter undergraduate residence was completed. These two five-storey buildings, positioned between 14th Street and College Drive immediately east of Cumberland Avenue, are the first buildings in a much larger vision as defined in the university’s “Vision 2057: University Land Use Planning” document.

Demand for student residences is high, especially in Saskatoon where housing costs continue to escalate, but the availability of residence at the U of S is extremely low compared to peer institutions. Before this project began, the university could accommodate only about 6% of our student population. The goal is to raise that to 15%.

The undergraduate residence project is being completed in two phases. When complete, there will be 800 beds in four buildings, each named for a type of tree that grows in Saskatchewan (Pine Hall, Birch Hall, Aspen Hall, Spruce Hall).

Because the residences are located south of the main campus, the buildings have a more contemporary look that blends well with the surrounding neighbourhood. The exterior features a combination of Tyndall stone, used in random patterns that resemble fieldstone, with stucco and extensive glazing.

The entrance of each L-shaped building and the common areas (lobby, laundry, meeting rooms, and open commons) are all located at the corner, or knuckle. This consistent design facilitates orientation inside the buildings.

The entrance of each of the L-shaped buildings is at the corner, or knuckle, and a wing extends to either side. The common areas (lobby, laundry, meeting rooms, and open commons) are also found at the knuckle. This consistent design facilitates orientation inside the buildings.

A large courtyard. In warmer months the landscaped outdoor living areas in the central courtyard will be available for residents to lounge or entertain in. This area will also be used for both informal and formal events, recreation, and outdoor learning.

Care was taken to make the residences feel more like a home than an institution. Each of the one-, two-, three-, and four-bedroom units average approximately 850 square feet in size and feature open concept living and eating areas. There will never be more than two students sharing a bathroom. Despite a restricted budget, the residence buildings were designed for maximum comfort with a contemporary look and feel. The interior finishes (flooring, paints, cabinetry) are of a higher aesthetic quality than what is usually found in a college residence.

Achieving optimal energy efficiency was also an important priority. The new residences feature a number of environmentally sustainable features. A particularly intriguing feature is the solar water-heating system—60 rooftop panels on one of the buildings will supplement the domestic hot water system.

Funding Partners

Design & Construction Partners

Meridian Development

Government of Saskatchewan
City of Saskatoon
The second phase of the Undergraduate Student Residences project is basically identical to Phase 1. These second two buildings will complete the framing around the large courtyard.

Construction is progressing well and is scheduled for completion in August 2012. When complete this phase will provide 400 beds in addition to the 400 beds in Phase 1.

Funding Partners

Design & Construction Partners

Meridian Development

Undergraduate Residence, Phase 2, can be seen in the background on the left hand side. Phase one, now complete, can be seen on the right. In the foreground, you can see the Graduate Student Residence (for more information, see page 16).
Graduate Student Residence

The Graduate Student Residence will provide students with an inviting home and help build a community of scholars within its walls. Located northeast of the RJD Williams Building, Graduate House was designed with a significant amount of functional common space to support interaction and academic networking, including small social spaces on each floor to larger community spaces for more formal gatherings and events.

Living suites will be offered in a range of configurations to suit individual preferences and budgets. The suites will range from single-storey studio units to two-storey double units with light-filled double-height living areas. All units are designed to be efficient, unique, and affordable—great places to study and live.

The historical context of the adjacent RJD Williams Building was an important architectural consideration, but the new structure references this context in a contemporary manner. Both the scale and exterior finishes selected for the new five-storey building are designed to relate to the Williams Building. The warm red and dark brown brick exterior will be accented by limestone-coloured brick and a vibrant ochre-coloured cement board. Large areas of glazing will provide interior spaces with good natural light. Glazing on the ground floor will establish a strong connection between indoor and outdoor spaces, and will provide those outside with a view of activities within the building.

Environmental considerations were also of primary importance in the design of the graduate student residence. These considerations include not only the reduction of energy and water consumption, but also issues of social inclusion, active transportation, thermal comfort and control, and good indoor air quality. The building itself will set an example to teach the students who live in it about the values of responsible global citizenship. A well-designed “green” building can maximize human comfort and have a positive impact on health and well being—the essence of a good place to study and to call home.

Graduate House is currently under construction and will soon be home to 260 graduate students. This will bring available graduate student residence accommodation on campus to nearly 15%, supporting the University’s goal of increased graduate and international student enrollment.

Graduate students should be moving into their new home in January 2013.
The projects indicated on this map are currently in construction. Although, from a construction perspective, some projects appear to be complete, from a project management perspective, they still are in the commissioning stage or are going through the certification process, which is why they appear in this section.

* Not indicated on this map is the Canadian Feed Research Centre (CFRC), which is located in North Battleford.
Canadian Feed Research Centre

The Canadian Feed Research Centre (CFRC), formerly the Feed Technology Research Facility, will be a state-of-the-art facility to support animal nutrition and feed processing research. This centre will be used by researchers and graduate students from many disciplines to research, develop, and commercialize new and better high-value animal feeds from low-value crops and from by-products of biofuel production. Their work will advance research in areas that include crop breeding for feed quality traits, the effects of processing on feed safety and quality, reduced antibiotic use, better livestock nutrition, improved animal health and product safety, feed delivery of vaccines for disease control, environmental protection, and to assist in regulatory compliance for new products and feed ingredients.

CFRC will be located in a commercial feed mill in North Battleford, Saskatchewan, that was purchased by the university and is being retrofitted to support research. Renovations and modifications are underway to accommodate a pilot-scale line, which will integrate with the existing industrial-scale line, and spaces to support research and teaching using a wide range of processing conditions.

The presence of both the pilot and industrial scale feed processing lines allows CFRC to support a broad range of research and training: specific-use feed preparation and nutrition research; evaluation of benefits (nutritional, functional, economical, and sustainability) of different equipment, processing techniques and conditions, and feed ingredients; toll-processing, contract research, and facility rental to industry clients for proprietary research; and scaling up of research findings from the pilot scale line to the industrial scale line for transfer of technology to industry.

When complete in winter 2012, this unique-in-Canada national research facility will serve a broad range of industries and involve regional, national, and international partnerships. For example, part of CFRC’s industrial capability has been licensed to Cargill, a global leader in animal nutrition and feeds, for commercial feed processing and toll feed-processing services. Not only will this partnership generate revenue to support research, a company like Cargill, with recognized expertise, market presence, and understanding of global markets, will attract global clients to the facility and to Saskatchewan.

Research conducted at CFRC will enhance and support other research centres as part of the University of Saskatchewan feeds research cluster that includes facilities like the Crop Development Centre, the Prairie Swine Centre, the new Rayner Dairy Research and Teaching Facility, and the Canadian Light Source synchrotron.

Campus Wide Lighting Retrofit

It’s debatable whether the most significant benefit of the university’s ongoing lighting retrofit is significantly reduced energy consumption or improved light quality.

Now nearing completion, the university’s efforts to replace outdated magnetic ballast light fixtures and T-12 lamps on campus with high-efficiency electronic ballasts and T-8 lamps have reduced energy consumption by an average of 23%. Some of the benefits of this are obvious—lower utility costs, fewer greenhouse gas emissions—but the positive health benefits are less easily discernible.

The new lights provide much better light quality. Simply stated, the light appears brighter, more like natural daylight. Studies suggest that work environments where the lighting appears more natural encourage a sense of wellbeing, improve alertness/productivity, and decrease absenteeism. Members of the campus community have consistently reported that better lighting levels is causing less eye strain and improving working conditions.

Also a significant consideration is the impact of the new lighting on the landfill and the environment. The new electronic ballasts and lamps are more efficiently and economically recycled or rendered suitable for disposal or reuse, and the raw components are less volatile and toxic.

26 buildings have been retrofitted. These are indicated by a blue dot on the map on page 5. The buildings that still need to be retrofitted are on the map on page 17.

Funding Partners

- Canada
- Cargill
- Additional Donors

Design & Construction Partners

- SNC-Lavalin
- Cargill
The dairy facilities at the University of Saskatchewan are over 30 years old and require replacement. Significant technical advancements that have occurred in the dairy industry since the current Dairy Research Barn was constructed in 1972, including the development of robotic milking machines and automated feeders, have rendered the facility obsolete. In addition, modern dairy cows are larger than those housed in the building at the time of construction.

This project will ensure the university meets the standards of the Canadian Council on Animal Care, the national standards body for the care and housing of animals used for teaching and research in Canada. The planned upgrades will address the university’s commitment to animal welfare, research, teaching, extension, and technology transfer.

The new facility will allow the university to increase its herd from 60 to 100 lactating animals, incorporate both robotic and traditional parlor milking capabilities, and expand animal handling, teaching, and research spaces. The project will also include the installation of advanced technology and state-of-the-art computer-based milking robotics and feed management systems that are typically found within an advanced dairy research facility.

The new facility will feature cattle housing and feed research areas, properly-sized and designed animal handling and teaching areas, contemporary ventilation and lighting systems, milk storage and support rooms, and staff and visitor spaces. An exciting new feature will be the overhead gallery, which will give visitors a bird’s eye view of modern dairy and agriculture production systems.

The existing facility will be renovated to house dry cattle. The Rayner Dairy Research and Teaching Facility plays a significant role in teaching undergraduate and graduate students within the College of Agriculture and Bioresources and the Western College of Veterinary Medicine. Research conducted in the new facility will involve dairy nutrition and feed development, animal fertility and health, animal management, technology development, and development of green technologies for improved sustainability.

The facility will also be used to further research from the College of Agriculture and Bioresources, College of Engineering, the Western College of Veterinary Medicine, and VIDO/InterVac.

Construction began in December 2011 and is expected to be complete by the end of 2012.

Funding Partners
- Saskatchewan Milk Marketing Board
- SaskCanola
- BMO Financial Group
- Farm Credit Canada
- Royal Bank of Canada
- Anonymous Donor

Design & Construction Partners
- Penf”
- DGH Consulting
Ryan/Dubé Equine Performance Centre

Construction on the addition to the Equine Performance Centre began in March 2011. When complete this enhanced facility will allow veterinary students the opportunity to study the overall physical performance characteristics of horses, with a particular focus on orthopedic condition and ailments.

The Equine Performance Centre is located north of the large animal clinic and is adjacent to the area dedicated to client animal unloading. The existing building is a rectangular pre-engineered structure with pre-finished metal siding. The expansion, situated north and east of the current facility, is being constructed around the existing pre-engineered structure. The exterior of the expanded building is clad in masonry and pre-finished metal that better match the aesthetics of the main building.

The project will add nearly 1,000 square metres to the centre, as well as vital resources to the Western College of Veterinary Medicine’s equine education, clinical, and research programs. The expanded Equine Performance Centre will provide a dedicated indoor facility for an undergraduate and graduate students enrolled in veterinary, biomedical, and medical programs. When combined with WCV’s new capabilities in CT imaging and Nuclear Scintigraphy, the possibilities for patient care and collaborative research are multiplied.

Providing the diagnostic capability for the new MRI and the therapeutic enhancement of the LinAcc within the Veterinary Medical Centre (VMC) will align with ongoing priorities in the college to enhance biomedical and clinical research. It also supports the campus-wide initiative in the area of One Health and strengthens ties between the health sciences areas.

The project began last fall and should be completed in spring 2012.

WCV MRI/LinAcc Installation

In 2010, the Western College of Veterinary Medicine (WCVM) made plans for the purchase of a magnetic resonance imaging (MRI) unit. The existing MRI was outdated and could no longer meet current medical imaging needs. It was removed in the summer of 2010 and plans to renovate the MRI suite were underway when the opportunity arose for WCVM to purchase a linear accelerator (LinAcc) from the Saskatchewan Cancer Agency in the spring of 2011. This was a tremendous opportunity for the college to replace the old cobalt therapy unit and bring veterinary cancer therapy capabilities to current standards.

When it was determined that both the MRI and the LinAcc could use the same new cooling system, the projects were combined. The new devices would fit in the spaces previously occupied by the old MRI and cobalt therapy units, however, the supporting infrastructure had to be modified to accommodate the new cooling system and equipment.

Demolition involved removal of old services and select walls to make room for the new equipment. Cooling and ventilation upgrades included the installation of a new chiller, fluid cooler, and associated pumps, piping, and duct work modifications. New electrical distribution equipment, including motor control centre, service distribution panel, variable frequency drives, transformers, and associated conduit and wiring, were installed. Lighting in the MRI suite was also upgraded to suit the new equipment.

With construction nearing completion, the new MRI facility will provide enhanced medical imaging capabilities that are essential for teaching and clinical programs at the WCVM. The LinAcc will expand opportunities for the university to contribute to the field of veterinary oncology.

In addition to their importance as clinical tools, the new MRI and LinAcc will be valuable resources for veterinary and human biomedical researchers. This equipment will strengthen collaborative partnerships with human health research and will open doors for more studies involving animal cancers as comparative models for human patients.

The units will enhance the education and training of equine MRI, a lunging arena, diagnosis and teaching of equine lameness, and clinical examination of primarily equine cases. Such a facility has been identified as a high priority for further development of modern equine clinical services and the clinical teaching program.

The new Equine Performance facility will also address significant animal and safety concerns and provide a fully functional, all-weather equine physical performance facility.

The Equine Performance Centre will be completed in the spring of 2012.
The International Vaccine Centre (InterVac), one of the largest vaccine research laboratories in North America, is nearing completion. Research conducted at InterVac will contribute to the development of vaccines to protect people and animals from the threat of diseases as diverse as hepatitis C, SARS, HIV, tuberculosis, and avian influenza.

InterVac will be one of the first containment level 3 (CL3) facilities in Western Canada equipped to handle both human and large animal diseases. Although many Canadian laboratories are rated to Level 3, InterVac will be one of only a few CL3 facilities in the world capable of supporting large animal vaccine trials.

To create the airtight rooms and environments necessary for a containment facility of this nature, strict monitoring in all areas of construction, certification, and operation are required. With construction nearing completion, the facility has undergone full commissioning of its extensive mechanical and electrical systems—almost 75% of the 13,670-square-metre facility will house complex building support systems. Rigorous testing of all systems in both normal and abnormal operational conditions was conducted to confirm correct operation under all circumstances. The building was also run through multiple failure scenarios to assure that all back-up and redundant systems are properly activated.

Once the facility is fully commissioned, the Canadian Food Inspection Agency and the Public Health Agency of Canada must certify that the facility is safe for work with the approved pathogens. This certification process involves not only site inspections and review of all construction documents, but also a review of the standard operating procedures for all tasks performed in the facility.

The last of the construction deficiencies, mainly cosmetic in nature, are currently being addressed. The certification process is expected to be complete in early spring, a milestone that will allow the building to be turned over to VIDO–InterVac for occupancy. There are a number of scientific trials that are ready to be conducted immediately upon the certification of the facility.

The InterVac grand opening was held on September 16, 2011, and was attended by representatives from all funding partners, including Prime Minister Stephen Harper, Premier Brad Wall, Mayor Don Atchison, and a number of other senior government officials and university representatives.

Funding Partners

- Canada
- Government of Saskatchewan
- City of Saskatoon

Design & Construction Partners

- PCL
- Smith Carter
- AODBT Architecture & Interior Design
The University of Saskatchewan is home to one of the largest phytotron facilities in the world. This controlled-environment plant-growth facility is one of the College of Agriculture and Bioresources’ most important teaching and research tools.

Even with Saskatchewan’s long, cold winters, the phytotron enables scientists to study three generations of plants (two in the phytotron and one in the field) every year, thereby accelerating development of new crop varieties and plant research.

The phytotron was built as part of the new Agriculture Building (1988–1991). There are 183 environmental chambers, located largely on the first floor of the Agriculture Building. These chambers range in size from 1 to 20 square metres and are capable of producing both high and freezing temperatures. Although four additional growth chambers were added in 1999, the chillers and operating systems that are fundamental to this important facility have reached the end of their life cycle. The refrigeration plant has become unreliable, and both the lighting systems employed within the growth chambers and the electronic controllers mounted on the chambers are obsolete.

The upgrade, which will be completed in three phases, will transform the phytotron into an efficient, state-of-the-art facility. Phase one, the lighting replacement and retrofit, is close to completion. The new lighting will produce intensities much closer to sunlight, which will result in more vigorous and healthier plants, and be much more energy efficient. Phase two, replacing the controllers, is also nearing completion. The obsolete microprocessor controllers on each chamber and the central computer monitoring system will be replaced and upgraded. Phase three, replacement of the original chillers, is still in the design phase.

The new phytotron, when completed, will attract top scientists and researchers from around the world and further enable the training and education of students who will join the ranks of the most accomplished scientific personnel in the world. This will allow the U of S to continue being a vital source of innovative plant varieties and land usage.

Funding Partners
- Saskatchewan Pulse Growers
- Western Grains Research Foundation

Design & Construction Partners
- Conviron
- Stantec

Utilities are the lifeblood of our campus infrastructure. As the campus continues to grow, we also need to upgrade required support systems. For example, our Central Heating Plant has not undergone a major core upgrade for over 43 years. The boiler feed water treatment system could no longer support the production of enough steam to meet campus needs. Several components needed to be expanded, upgraded, or completely replaced to meet the university’s growing demand for steam heating and process steam for research and operations.

Before the Heating Plant renovation/addition, the existing boiler feed water treatment equipment in the Heating Plant was limited to an output of 300,000 pounds per hour (PPH) of steam. During extremely cold temperatures, the plant has experienced steam loads in excess of 280,000 PPH. In order to accommodate planned campus expansion, as well as to provide appropriate capacity redundancy for longer-term unforeseen requirements, the Heating Plant feed water capacity has been increased to 600,000 PPH.
This addition will ultimately provide capacity for the addition of approximately 150,000 square metres of building space on campus. In future, boiler capacity will also need to be expanded to meet increased demand, but with increased feed water capacity in place, a future boiler expansion will be possible without further increasing the size of the feed water system.

To accommodate the expansion, a 500-square-metre addition to the Heating Plant Building was required. This included a full basement extension, as well as expansion on the main floor and mezzanine levels within the existing building. This additional space also allowed for renovations to meet current building, environmental, labour, and pressure vessel codes and regulations. In addition to the equipment upgrades, new male and female washrooms, with showers, change rooms, and locker areas, were constructed to meet current code regulations, and several new offices were added.

With the completion of this project, occupants of the U of S buildings can rest assured that there will now be enough steam to supply the existing buildings, as well as all the newly constructed buildings, with heat for the foreseeable future.

Funding Partners

Design & Construction Partners

- Graham Construction
- AECOM
Health Sciences

An investment in the future of health and education that will increase the quality of care for all Saskatchewan people.

The Health Sciences project is more than a building. This is the largest capital building project in the university’s history. It builds on our proud heritage, but will be an investment in the future of health and education in the province. While the building itself will be impressive, the research and teaching that will go on inside will attract the most talented medical personnel, educators, and researchers, who will provide better training for health professionals and increase the quality of care for all Saskatchewan people.

Constructed in 1948, the original Health Sciences Building (now referred to as A Wing) was built in the collegiate gothic style. Two additions (B Wing and C Wing) in the 1970s and 1980s were constructed in a brutalist style (from the French term béton brut, meaning raw concrete), which was common in that era but was inharmonious with the collegiate gothic style of the original building. Today, much of B Wing has been concealed by the new D Wing, which complements the university’s now characteristic collegiate gothic style.

Tremendous care was taken to match the new stone (over 1,700 square metres of Tyndall and 3,300 square metres of dolomite limestone) with the original 1948 stonework. This careful attention to detail secured the 2011 Masonry Construction Project of the Year Award in the Institutional category.

The new D Wing is a 18,680-square-metre, L-shaped structure with four storeys on the east side and six storeys on the north, joined by a corner “joint” or “knuckle.” The two sides wrap around the north and east sides of B Wing and are linked to the existing building by a six-story atrium and two smaller atria, which will provide natural light in the interior spaces of the building. The atria spaces will also provide visual and physical connections between new and existing construction and will become much needed interior community and collaborative space for Health Sciences.

Respecting the old while building new may also contribute to a silver Leadership in Energy and Environmental Design (LEED) certification. This designation would result from many different efforts, such as recycling building materials and sourcing locally, however the most interesting sustainable initiative might be the surface-level “green roof.”

Two levels of basement extend beyond D Wing’s footprint in some areas, which proved to be a perfect opportunity for the development of a surface-level green “roof” patio.

D Wing is sometimes referred to as the Biomedical Wing. The occupants will primarily be biomedical researchers from medicine, pharmacy and nutrition, and the Saskatoon Cancer Centre and faculty associated with groups from other colleges. The building features large open research laboratories designed to foster interaction and support a multi-disciplinary workplace.
Many areas within D Wing are nearing completion. Final interior finishes are underway and some offices and laboratories are scheduled for occupancy starting in May 2012. General occupancy of offices and laboratories is scheduled to be essentially complete by the fall of 2012.

Within the D Wing atriums, there are no light fixtures on the ceiling. Instead, daylight and light from wall-mount fixtures is reflected off large panels on the ceiling.
The Health Sciences E Wing is easily one of the most visible projects on campus. It sits prominently on the corner of Wiggins Avenue and College Drive.

What is also clear is the unique marriage of old and new architecture. E Wing features two distinct sections: a three-storey modern arm, and a four-storey collegiate gothic arm that more closely resembles the architecture common in the campus core. Blending the traditional architecture with the unique qualities of the adjacent buildings will create a landmark presence for Health Sciences and the campus as a whole.

E Wing will also provide vital teaching and program spaces for the health science colleges that are of critical importance in maintaining accreditation for the College of Medicine. These include the library and the Clinical Learning Resource Centre, which will include a skills lab, examination rooms, procedure lab, and simulation lab.

Natural lighting was a top priority. The long and narrow design of E Wing allows daylight into the central areas of the building. It has also been proposed that the perimeter offices have glazing walls along the fronts to provide lots of natural light into the interior spaces. Other sustainable design features include occupancy sensors to control room lighting and ventilation, as well as large windows in the library to take advantage of light and solar heat. The Health Sciences E Wing project will be targeting LEED gold rating.

The new E Wing will connect to the Dental Building through a modern atrium that is expected to be quite spectacular. The designers recognized that, particularly in a city such as Saskatoon where the weather keeps people inside for much of the year, large volumes of space with greenery lift the spirits of building occupants. They also serve as very functional spaces for public gatherings.

The Health Sciences Library is located on the south end of the multi-storey public atrium and will occupy two storeys. Designed with plenty of natural light, it will feature
The Health Sciences facility is made up of several wings:
- **A Wing** – original Health Sciences Building constructed in 1948
- **B Wing** – addition built in the 1970s
- **C Wing** – addition built in the 1980s
- **D Wing** – addition started in 2008, expected to be complete in 2012
- **E Wing** – addition started in 2009, expected to be complete in 2013

The long and narrow design of E Wing allows daylight into the central areas of the building—a top priority for this section of the building. Some perimeter offices will also have glass along their front walls to provide natural light into the interior spaces.

The E Wing design is a unique marriage of old and new architecture.

Health Sciences Timeline

<table>
<thead>
<tr>
<th>Project Components</th>
<th>Timeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renovations to existing B Wing</td>
<td>Completed in 2006</td>
</tr>
<tr>
<td>D Wing new construction</td>
<td>2008–2012</td>
</tr>
<tr>
<td>E Wing new construction</td>
<td>2009 –2013</td>
</tr>
<tr>
<td>A/B/C Wings renovation</td>
<td>2013–2016</td>
</tr>
</tbody>
</table>

Rendering provided by Kindrachuk AGREY Architecture
The projects on the following pages are in the early stages of development, or perhaps even still speculative. The location of future projects not identified on this map have yet to be determined.
A & B Wings

With an eye on the power that interdisciplinary studies bring to health sciences, the University of Saskatchewan is well on its way to building an expanded, integrated, and multidisciplinary facility that will truly set us apart from other institutions of higher learning. The completed Health Sciences facility will also be a state-of-the-art facility that incorporates the latest technology and innovations while still respecting the proud traditions of our campus.

What we now refer to as “A Wing” is the original Health Sciences Building constructed in 1948. The building was expanded in the 1970s and 1980s with the addition of the B Wing and C Wing respectively. After the most recent additions (D Wing and E Wing) are complete, the final stage of the overall Health Sciences project will be to renovate the existing A and B Wings.

Respecting the university’s architectural heritage is an important factor in the planning and design of renovations to this early building. ADA Architecture is currently doing a heritage assessment as part of the schematic design report and will be treating A Wing as a heritage project.

The renovated A Wing will be predominantly administrative space. Space in B Wing will be used to more directly support programming. The deans of all the colleges in the Health Sciences complex, as well as their support staff, will be housed in A Wing. In addition, the administrative offices for the Colleges of Medicine, Dentistry, Nursing, Pharmacy and Nutrition, and Physical Therapy will be located there.

Renovations will include an updated gross anatomy laboratory and morgue, and conversion of the existing Health Sciences Library and dean of medicine space to teaching spaces. The existing lecture theaters will be updated to reflect modern teaching styles and accommodate distance learning requirements.

As the final design takes shape, a better understanding of the integration of programs and facilities in the entire health sciences complex will emerge. Program space requirements identified in the A/B Wing planning and design process will influence the currently undesignated space on the third floor in E Wing.

When complete, the Health Sciences project will bring researchers, faculty, students, and staff from all disciplines of health science even closer together than current facilities permit. This new physical proximity will be convenient and efficient, but more importantly, it will also create a multidisciplinary environment for health education and research. More fluid, responsive, and adaptable, this integrated approach will change the face of our health care. Construction is expected to begin in 2013 and be complete in 2016.
Rising up out of the landscape of our campus, the iconic Gordon Oakes – Red Bear Student Centre will be a vibrant, inclusive gathering place that welcomes everyone—Aboriginal and non-Aboriginal people alike—to come together and learn from each other in respectful ways.

Although the building itself will be located in the centre of Wiggins Court (flanked by the Murray Library and the College of Arts and Sciences building), its presence will begin at Wiggins Avenue with a Tyndall-stone landscape wall that will slowly undulate and eventually wrap itself around to become the northern wall of the building—a symbolic blanket protecting the centre from Saskatchewan’s northern winter winds.

The facility may use stone that is typical of many buildings on campus, but the carefully selected colour and texture will be evocative of a buckskin blanket adorned by colorful fieldstone “beads.” Windows will resemble horizontal ribbons that maintain a strong relationship with the earth and are interrupted by pattern and decoration to celebrate the seven sacred directions—not only north, east, west, and south, but also sky, earth, and the centre (the spirit).

Like the medicine wheel, the building has four quadrants representing the four cardinal directions. Each of these directions represents a season and has a particular colour—south (summer, red), east (spring, yellow), west (dark, but not black, fall), and north (winter, white). The entrance is on the south side and a person moves clockwise through the building. Along the east side of the building, the wall will gently curve back on itself and enter the building, eventually enveloping the ceremonial space at the centre, and returning to the earth as the focal form of the western stairwell. The building’s design is based on the notion of a circle being the symbolic base for healing, knowledge, and equality—this is the foundation for all Indigenous ceremonies. Therefore, the central gathering space is both the symbolic and systemic base for the building’s plan. Each department is anchored to this central space and it will be the departure point for all other parts of the building.

Like the design itself, programming inside the Gordon Oakes – Red Bear Student Centre will be open and collaborative. It will include three components that, while separate, will build upon each other through synergies, stronger relationships, and opportunities. As the name implies, the centre will feature space for Aboriginal students, including a lounge, resource/computer lab, and student office, coordinated through the Indigenous Student Council.
Aboriginal Students’ Centre /Student and Enrolment Services will have office and support space for student advisors/counselors and space for Aboriginal elders. Finally, a central gathering space/ceremonial space will act as the social hub of the facility and create a “cultural destination” for both the campus and broader community.

In an effort to create efficiencies, optimize design features, and reduce costs, architect Douglas Cardinal was asked to revisit the design. Cardinal, whose signature buildings include the Museum of Civilization in Gatineau, Quebec, and the Smithsonian’s National Museum of the American Indian in Washington, DC, is of Métis and Blackfoot heritage. Designed by Cardinal, the centre will not only be a stunning piece of Aboriginal architecture, it will also be a vibrant, inclusive gathering place where all U of S students, staff, and faculty can connect, celebrate Aboriginal history and culture, and learn from each other.

The University of Saskatchewan is committed to becoming the pre-eminent Canadian medical-doctoral university in Aboriginal education and we want to be the university-of-choice for Aboriginal students in Canada. Construction of the Gordon Oakes – Red Bear Student Centre will be a key milestone in meeting that goal.

Construction is scheduled to start in summer 2012.
What is a cyclotron? A cyclotron uses electric-ity and magnetic fields to accelerate protons (subatomic particles) to extremely high speeds. These protons can be steered so that they collide with targets to produce radio-active isotopes (radioisotopes), which are essential for many diagnostic and therapeutic procedures in human and animal health.

As part of the proposed Saskatchewan Centre for Innovations in Cyclotron Science (SCI-CS), the University of Saskatchewan will be acquiring a cyclotron to support Saskatchewan’s first positron emission tomography–computed tomography (PET-CT) scanner, which will be purchased by the Saskatoon Health Region and installed at Royal University Hospital.

PET-CT scans have a wide variety of uses, but are especially valuable in cancer treatment, where they allow doctors to precisely locate tumours and see if treatments are working. A PET-CT camera combines both positron emission tomography (PET) and x-ray computed tomography (CT) in a single device so that images acquired from both devices can be superimposed into a single image to reveal fine details that would not have been as visible using either technique alone.

The isotopes used by PET-CT scanners are produced by a cyclotron. Because cyclotron-produced radioisotopes decay within hours, the cyclotron must be located near the scanner. While the PET-CT will be situated at the Royal University Hospital, the existing Animal Resource Centre (ARC) will be repurposed and expanded to accommodate the cyclotron.

Saskatchewan and Prince Edward Island are the only Canadian provinces without PET scanning facilities. About 300 Saskatchewan cancer patients must travel outside the province every year for scans. The cyclotron can also be used to investigate other short-lived isotopes that promise to reveal ever-clearer pictures of the body’s inner workings.

The SCI-CS facility will offer a wide range of research opportunities in medicine, plant and animal science, and materials science. It will bring together students, faculty, and researchers from a wide array of disciplines, the Canadian Light Source, and industry partners, through interdisciplinary and cross-sector programs and problem-solving research initiatives. Together with facilities such as the Canadian Light Source, the cyclotron and PET-CT will provide unparalleled training opportunities for the highly skilled people necessary for these facilities.

The cyclotron and PET-CT facilities follow a long tradition of nuclear physics and nuclear medicine research and development at the U of S. This includes the country’s first betatron for research and cancer treatment in the 1940s, the first cobalt-60 cancer treatments in the 1950s, and Canada’s first high-energy linear accelerator at the Saskatchewan Accelerator Laboratory in the 1960s (now part of the Canadian Light Source synchrotron).

The project, still in its early stages of development, is expected to be substantially complete in fall 2013.
The age of our buildings has come to a critical juncture. The continued deterioration of our buildings, coupled with growth in our deferred maintenance needs, now present a liability that must be addressed to preserve our facilities for future generations. While every attempt has been made to take advantage of building renewal opportunities within the scope of our recent capital projects, we are still behind in terms of addressing our most critical deferred maintenance priorities.

RenewUS is our strategy to address capital renewal (“keep up”) and deferred maintenance (“catch up”). The program will identify and prioritize our most critical deferred maintenance liabilities, but more importantly blend these needs with academic program renewal and the revitalization of the buildings and programs within the core of our campus. Projects will be prioritized through a blending of capital stewardship, academic priorities, and financial and planning opportunities.

The intent is to create a program with specific outcomes, investigate multiple funding sources, and segment our deferred maintenance needs to match specific funding strategies and opportunities. The sustaining capital grant and core campus revitalization will also be rolled into the new program.

The program, if approved, will cost approximately $265 million (or more) over five years. Approximately $100 million will be put toward deferred maintenance and renewal, $70 million toward ongoing capital renewal, $70 million toward infrastructure, and $25 million toward critical information and communication technology requirements (ICT).

RenewUS will address issues of deferred maintenance as part of our responsibility in stewarding government assets. It will ensure our students, faculty, staff, and programs are housed in a safe, comfortable, and functional study and work environment.

The proposed RenewUS projects are identified on the map of Future Projects on page 28.
Child Care Facilities Project

Child Care Centre in the RJD Williams Building has 66 spaces. This project, which aims to double the number of child-care spaces at the U of S by 2013/14, will be an important first step toward addressing this shortfall.

The current plan involves two components. The first is to expand, and possibly renovate, the Campus Day Care to increase child-care spaces to 90. To achieve this, facilities located immediately adjacent to the child-care facility would be relocated to make room for the expansion. An increase to the exterior play space would also be required, so the existing outdoor play area would also grow along with the interior space. New provincial regulations require more square footage per child than what is currently provided, as well as access to outdoor play space and sunlight.

The second component is the development of a new, purpose-built child-care facility in College Quarter. The design and location of this new facility is still in the early stages. Exact details regarding building size and form are still being investigated, however, it will be built to accommodate 64 children.

One of the options being explored is to repurpose the seed barn located on the south side of College Drive. The feasibility of this option is under review as the barn is more than 100 years old and would need to be relocated and renovated.

Whichever plan is ultimately deemed to be the most appropriate for the campus community, all efforts will be made to ensure the new space will be environmentally sustainable, while still able to serve the ever-growing demand on campus.

The Clarion Project

Imagine. Inspire. Transform.

The Clarion Project will create an enhanced creative environment at the University of Saskatchewan that will promote innovative arts and multi-disciplinary programming, and ultimately result in the construction of a new fine and performing arts facility. This facility will be a place to create and strengthen partnerships between the university and the community, and will fill a niche for community groups who want to host small-to-medium-sized cultural events.

In an effort to better define the Clarion Project, the steering committee undertook a series of design sessions. The first recommended a series of principles that will guide all aspects of development. The second explored location and scope, with reference to the academic plan and principles. The steering committee is committed to a creative architectural solution that is both visually and aesthetically stunning, but also very functionally creative in terms of how the departments will relate to each other and share their focus and expertise. More concrete direction on the project is expected in 2012.

Accessible, affordable, high-quality child care on or near campus is becoming increasingly important to the recruitment and retention of outstanding students, faculty, and staff. Unfortunately, the University of Saskatchewan is seriously underserved with respect to the number of available child-care spaces.

A January 2011 survey indicated demand for over 800 child-care spaces on campus, yet only 110 spaces are available between two facilities: the Campus Day Care in the Education Building has 44 spaces, and the USSU
Preliminary Projects

On a preliminary basis, the University of Saskatchewan is currently assessing six potential major capital projects. The following projects are being vetted through the Major Project Planning Process.

Education Building LEED EBOM Initiative

The LEED Existing Buildings: Operations and Maintenance (LEED EBOM) program was designed to certify the sustainability of operations at existing commercial and institutional buildings. The LEED EBOM pilot project being considered for the Education Building will address all aspects of operations and maintenance. The project is currently in the assessment and planning stage.

Ice Arena

Preliminary planning is underway regarding the development of a new ice arena at the university to replace the aging Rutherford Rink built in 1929. The new ice arena is currently being reviewed as part of development plans for the northeast quadrant of College Quarter.

GreenWay

Preliminary planning is underway to ensure proper access is provided to Phase 2 of the Undergraduate Student Residences in time for the opening in August of this year. The College Quarter Master Plan identifies the GreenWay as the “linear nerve centre” of College Quarter that will tie together not only the five new residence buildings, but also the inner courtyards, green spaces, and Aird Street.

Replacement of Chillers #2 and #3

Existing Chillers #2 and #3 (representing 46% of the plant capacity) in the Central Cooling Plant are charged with the halocarbon refrigerant R11. It will be necessary to permanently remove Chillers #2 and #3 from service prior to January 1, 2015 as dictated by federal regulations.

Preliminary pre-planning is underway to assess the college’s space requirements.

Murray Library Transformation Project, Phase 3

Planning is currently underway to review the physical location of Library resources and services in order to better integrate and co-locate Library and University Learning Centre activities. The major focus of Phase 3 is to support service delivery and increase access to scholarly information resources and services.

Southern Saskatchewan Academic Health Sciences Hub

Discussions are underway regarding the development of a Southern Saskatchewan Academic Health Sciences Hub. The concept is to provide a network and appropriate facilities to support inter-professional and distributed health sciences education, training, and research in the southern part of the province. Identification and development of appropriate space to accommodate the programs is currently underway.

Stone Barn – Structure and Safety Issues for Long-term Stability

The Stone Barn is a landmark building, a symbol of the architectural focus and history of the University of Saskatchewan. A structural assessment in the spring of 2010 concluded that the Stone Barn has significant structural liabilities and resulted in its closure. A new assessment recommends a two-phased approach to remedy the existing concerns and ensure the future structural integrity of this landmark. A third phase is also being considered to repurpose the facility for future needs.
Appendix 1:

This table indicates how current and future projects within this publication align with the university’s strategic directions.

<table>
<thead>
<tr>
<th>Project name</th>
<th>Project Status</th>
<th>Areas of Focus, 2nd Planning Cycle, 2008–2012</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Construction Complete</td>
<td>Developing</td>
</tr>
<tr>
<td>Graham Huskie Clubhouse Expansion</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Griffiths Stadium at PotashCorp Park, Seating Expansion</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Marquis Hall Renewal</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Diefenbaker Building Rejuvenation</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Place Riel Student Centre Expansion/Renovationon</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Student Health & Counselling Centre</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Steam Distribution Replacement (Veterinary Road)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Knowledge Infrastructure Program (KIP) Roofing Project</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>WCVM Diagnostic Renovation (KIP) Project</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Student Residences, Phase One</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Student Residences, Phase Two</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Graduate Student Residence</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Canadian Feed Research Centre</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Campus Wide Lighting Retrofit</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Rayner Dairy Research and Teaching Facility</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Ryan/Dubé Equine Performance Centre</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>WCVM MRI/LinAcc Installation</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>International Vaccine Centre (InterVac)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Agriculture Building Phytotron Infrastructure Renewal</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Heating Plant Expansion Feed Water Addition</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Health Sciences, D Wing</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Health Sciences, E Wing</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Health Sciences, A & B Wing</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Gordon Oakes – Red Bear Student Centre</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Saskatchewan Centre for Innovations in Cyclotron Science</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RenewUS: A Proposal to Renew Our Core Campus</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Child Care Facilities Project</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>The Clarion Project</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Beef Cattle Research & Teaching Unit</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Replacement of Boiler #2</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Natural Resources Innovation Complex (working title)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Murray Library Transformation Project Phase 3</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Southern Saskatchewan Academic Health Sciences Hub</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Stone Barn, Structure & Safety Issues for Long-term Stability</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Education Building LEED EBOM Initiative</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Playing Fields</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Replace T1 and T2 Transformers</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Ice Arena</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Greenway</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Replacement of Chillers #2 & #3</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

1. Developing projects have been presented to the Board of Governors as an information item or for preliminary approval.
2. Emerging projects are currently being assessed and vetted through the Major Project Planning Process.
<table>
<thead>
<tr>
<th>Areas of Focus, 3rd Planning Cycle, 2012–16</th>
<th>Project Classification</th>
<th>Foundational Document (driver)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge Creation & Impact</td>
<td></td>
<td>Aboriginal Initiatives</td>
</tr>
<tr>
<td>Innovation in Academic Programs & Services</td>
<td></td>
<td>Core Area Master Plan</td>
</tr>
<tr>
<td>Aboriginal Engagement: Relationships, Programs</td>
<td></td>
<td>Enrolment</td>
</tr>
<tr>
<td>Culture & Community, Our Local & Global Sense of Place</td>
<td></td>
<td>Research, Scholarly & Artistic Work</td>
</tr>
<tr>
<td>Student – primary focus is improving the student experience and / or retention</td>
<td>Academic – primary focus supports the teaching, learning and research mission</td>
<td>Teaching & Learning</td>
</tr>
<tr>
<td>Academic – primary focus is the enhancement, expansion or renewal of university infrastructure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infrastructure – primary focus is the enhancement, expansion or renewal of university infrastructure</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Foundational Documents are university-wide planning documents that are strategic in nature and describe, at the highest level, the general overarching direction the university is prepared to take on a particular issue. They can be found online at www.usask.ca/ipa/planning/foundational_docs.
Helping students feel at home.

Residence move-in day can be a chaotic, nerve-wracking experience. Maybe you've experienced it yourself or helped a loved one set-up their new domain. Saying good-bye to the comforts of home and moving into a new space, with new people and a new schedule isn't always easy.

On September 16, 2011 the University of Saskatchewan celebrated the opening of College Quarter, the beautiful new undergraduate residence, and thanks to donors Drs. Russell and Katherine Morrison, announced the construction of Graduate House—making the move for students (and their loved ones) just a little easier.

We would like to recognize all the donors who have helped make the University of Saskatchewan one of the most beautiful campuses in Canada and a place our students are proud to call home.

Thank you!

Visit give.usask.ca to find out how you can support a building project at the University of Saskatchewan.